Crystallographic and Magnetic Properties of the Cd(OH)₂ Layer Structure Compound TiS₂ Containing Extra Iron

T. TAKAHASHI AND O. YAMADA

RCA Research Laboratories, Inc., P.O. Box 5151, Tokyo, International 100-31, Japan

Received July 28, 1972

The systems Fe_xTiS₂ were prepared by the reaction between Fe and TiS₂ in vacuum. Fe_xTiS₂ with $x = \frac{1}{4}, \frac{1}{2}$ and $\frac{2}{3}$ were found to have a monoclinic supercell with lattice parameters a' = 2a and c' = 2c in the pseudohexagonal description, where a and c are the lattice parameters for the TiS_2 cell. Fe₁ TiS_2 had a trigonal supercell of $a' = \sqrt{3}a$ and c' = 2c. Magnetic measurements of these compounds were carried out between 78 and 340 K. The inverse susceptibility vs temperature curve for Fe₁TiS₂ followed the Curie-Weiss law, whereas that for Fe₄TiS₂ was non-linear. Fe₄TiS₂ and Fe₄TiS₂ were both ferromagnets with $T_c \sim 111$ K and 112 K and $\theta_p = 124$ K and 128 K, respectively.

Introduction

Recent studies (1-3) have revealed that the first-row transition-metal atoms can be inserted into the octahedral interstices between the prismatic chalcogen layers of the dichalcogenides NbX_2 and TaX_2 , X = S and Se. Some compounds, e.g., MnNb₃S₆ and CrNb₃S₆, even become ferromagnetic. It should be of interest, therefore, to investigate the intercalation of 3d-transition metals into other layer-structure compounds. TiS_2 has the Cd(OH)₂ layer structure (space group $C\overline{3}m$) where every other metallic layer in the c direction of the hexagonal NiAs B8 structure is missing. It, therefore, is conceivable that 3d-transition metal atoms can be inserted into the interstices between neighboring sulfur layers in TiS_2 . Indeed, the existence of such a compound, namely $Fe_{4}TiS_{2}$ (= $FeTi_{2}S_{4}$) has been known for some time (4-6). Hahn et al. prepared it from monosulfides and sulfur and reported that it has a trigonal P3m1 structure in which vacancies are randomly distributed in alternate metal layers (4). More recently, Plovnick et al. prepared the sulfide from high-purity elements and found that it had the $Cr_3S_4 I2/m$ structure in which vacancies are ordered in alternate metal layers (5, 6). These conflicting results seem to indicate that the sulfide $FeTi_2S_4$ can adopt different crystal structures correspond-Copyright © 1973 by Academic Press, Inc. All rights of reproduction in any form reserved.

ing to different degrees of ordering that in turn depend upon how the sulfide was prepared. In this respect, it is interesting to see what crystal structure will result when $Fe_{r}TiS_{2}$ is prepared from Fe metal and TiS₂. We therefore started an investigation of adding Fe to TiS₂.

Experimental

1. Sample Preparation

 $\operatorname{Fe_rTiS_2}(x = \frac{1}{4}, \frac{1}{3}, \frac{1}{2} \text{ and } \frac{2}{3})$ were synthesized by firing stoichiometric mixtures of Fe metal powder (99.9%) and TiS₂ at 900°C in evacuated quartz ampoules. Repeated firings at 900°C were usually required for a complete reaction of the constituents. The TiS_2 used was synthesized from Ti metal (99.9% or better) either in the form of sponge or sheet, and elemental sulfur (99.9%), following the procedure described by Lotgering and van Stapele (7). The lattice parameters of TiS_2 thus synthesized agreed with those for the stoichiometric TiS_{2.00} within experimental error (8). The stoichiometry of the TiS_2 used was also checked by a weight-loss procedure after oxidation in dry oxygen at 700°C (Anal. Calcd. for Sulfur: 57.24%. Found: 57.25%) (5). The density of the TiS₂ was determined by weighing in toluene. The observed value of 3.21 ± 0.01 g/cm³ was in reasonable agreement with the

TABLE I

ANALYTICAL DATA FOR Fe, TiS2

	%	Fe	%	śS	Der (g/	nsity cm³)
Compound	Calcd	Found	Calcd	Found	X ray	Measd
Fe ₄ TiS ₂	11.08	11.20	50.90	49.97	3.61	3.56
Fe ₄ TiS ₂	14.25	14.08	49.08	47.91	3.72	3.66
Fe₁TiS₂	19.96	19.98	45.81	45.14	3.95	3.87
Fe ₃ TiS ₂	24.95	24.84	42.96	42.11	4.22	4.03

theoretical value of 3.245 g/cm^3 calculated by using the lattice parameters obtained (cf. Table II).

2. Analytical Work

Analyses of all compounds for iron and sulfur were performed by atomic absorption spectroscopy using a Hitachi 208 Atomic Absorption Spectrometer.

Details of analytical procedures will be found elsewhere (9). Densities were determined by weighing in 1,1,2,2-tetrachloroethane. The results of the chemical analyses and density measurements are summarized in Table I.

3. X-ray Measurements

Powder samples were examined by a JEOL¹ X-ray diffractometer with CuK α radiation. Lattice parameters were determined from films taken by a Debye–Scherrer camera using Cu- or FeK α radiation. The lattice parameters were refined using the sin² θ extrapolation.

¹ Japan Electron Optics Laboratory.

4. Magnetic Measurements

Magnetic properties were measured between 78 and 340 K using a Princeton Applied Research vibrating sample magnetometer. Magnetic susceptibilities were calculated from the data in the paramagnetic region assuming $M = \chi H$.

Results and Discussion

1. Crystallographic Properties

The X-ray data for the compounds Fe_xTiS_2 as well as TiS₂ used for the present experiment are listed in Table II. The lattice parameters for $Fe_{1}TiS_{2}$ (=FeTi₂S₄) prepared by other workers from different raw materials are also listed for comparison. The inclusion of iron led to the increase in the c parameter of the $Cd(OH)_2$ cell in all the compounds. No single-phase materials were obtained for Fe_xTiS_2 with $x > \frac{2}{3}$. Ordering took place in all the Fe_xTiS_2 compounds. $Fe_{4}TiS_{2}$, $Fe_{4}TiS_{2}$ and $Fe_{4}TiS_{2}$ were found to have a supercell of a' = 2a and c' = 2c, whereas Fe_1TiS_2 was found to have a supercell of a' = $\sqrt{3}a$ and c' = 2c, where a and c are the lattice parameters for the original TiS₂ cell. These supercells, projected along the c axis, are schematically illustrated in Fig. 1. In Fig. 1(a), the $\sqrt{3}a$ supercell as well as the original $Cd(OH)_2$ cell are illustrated. Identifying Fe atoms by letters, the cation stacking sequence for Fe₁TiS₂ will be O-B-O-C-O where O denotes the layer without Fe atoms, i.e., Ti layers. In Fig. 1(b), the 2a cell is illustrated. The probable stacking sequence for Fe₁TiS₂ will be O-A-O-D-O while that for $Fe_{t}TiS_{2}$ will be O-(A + D)-O-(B + C)-O. Therefore, the true crystal symmetry for the $\sqrt{3}a$ cell is

TABLE II

	Space	Lattice parameters for Cd(OH) ₂ cell								
Compound	group	<i>a</i> (A)	c (A)							
TiS ₂	C3m	3.408 ± 0.005	5.698 ± 0.005							
Fe ₁ TiS ₂	C2/m	3.422 ± 0.005	5.712 ± 0.005							
Fe ₄ TiS ₂	P31c	3.428 ± 0.005	5.733 ± 0.005							
Fe ₁ TiS ₂	12/m	3.437 ± 0.005	$\textbf{5.749} \pm \textbf{0.005}$							
Fe ₃ TiS ₂	12/m?	3.429 ± 0.005	5.764 ± 0.005							
Fe _{0.50} Ti _{1.00} S ₂ "	P3m1	3.416 ± 0.005	5.699 ± 0.005							
FeTi ₂ S ₄ ^b	12/m	$\textbf{3.426} \pm \textbf{0.005}$	$\textbf{5.730} \pm \textbf{0.005}$							

X-RAY DATA FOR FexTiS2

" Synthesized from monosulfides and sulfur by Hahn et al. (4).

^b Synthesized from elements by Plovnick et al. (5) ($\beta = 90.10^{\circ}$).

FIG. 1(a). Schematic projection of the structures of TiS_2 and trigonal $Fe_{4}TiS_2$ on the *c* plane. The hexagonal unit cell of TiS_2 is indicated by broken lines. The trigonal $\sqrt{3}a$ supercell of $Fe_{4}TiS_2$ is indicated by full lines. (b) Schematic projection of the structures of $Fe_{4}TiS_2$ and $Fe_{4}TiS_2$ on the *c* plane. The pseudo-hexagonal 2*a* supercell is indicated by full lines. The monoclinic supercell of $Fe_{4}TiS_2$ is indicated by broken lines and that of $Fe_{4}TiS_2$ is indicated by dotted lines.

trigonal (space group $P\overline{3}1c$) whereas that for the 2*a* cell is monoclinic (space group; C2/m for $x = \frac{1}{4}$ and I2/m for $x = \frac{1}{2}$). Those monoclinic cells are also indicated in Fig. 1(b). In terms of the proposed space groups, the ordered structures Fe_xTiS₂ ($x = \frac{1}{4}, \frac{1}{3}, \text{and } \frac{1}{2}$) are described as follows:

(I) $x = \frac{1}{4} : C2/m$ $(a' = 2\sqrt{3}a, b' = 2a, c' = 2c)$ (000; $\frac{1}{2}20$) + 2Fe in 2(a):000 2Fe in 2(d): $0\frac{1}{2}\frac{1}{2}$ 8Ti in 4(i): $\pm (x0z)$ with x = 0, $z = \frac{1}{4}$ and $x = \frac{1}{2}, z = \frac{1}{4}$ 8Ti in 8(j): $\pm (xyz; x\bar{y}z)$ with $x = y = z = \frac{1}{4}$ 16S in 4(i): $\pm (x0z)$ with $x = \frac{1}{6}, z = \frac{1}{8}; x = \frac{1}{6}, z = \frac{5}{8}; x = \frac{1}{3}, z = \frac{1}{8}$ and $x = \frac{1}{3}, z = \frac{5}{8}$. 16S in 8(j): $\pm (xyz; x\bar{y}z)$ with $x = \frac{1}{16}, y = \frac{1}{4}, z = \frac{3}{8}$ and $x = \frac{1}{16}, y = \frac{1}{4}, z = \frac{7}{8}$.

(II)
$$x = \frac{1}{3}: P\overline{3}1c$$
 $(a' = \sqrt{3}a, c' = 2c)$
2Fe in 2(c): $\pm(\frac{1}{3}\frac{1}{3}\frac{1}{4})$
2Ti in 2(b):000; 00 $\frac{1}{2}$
4Ti in 2(f): $\pm(\frac{1}{3}, \frac{2}{3}, z; \frac{1}{3}, \frac{2}{3}, \frac{1}{2} - z)$ with $z = 0$
12S in 12(i): $\pm(x, y, z; \overline{y}, x - y, z; y - x, \overline{x}, z; y, x, \frac{1}{2} + z; \overline{x}, y - z, \frac{1}{2} + z; x - y, \overline{y}, \frac{1}{2} + z)$ with $x = \frac{1}{3}, y = 0, z = \frac{1}{8}$.

(III) $x = \frac{1}{2}$: I2/m $(a' = \sqrt{3}a, b' = a, c' = 2c)$ $(000; \frac{11}{2}; \frac{1}{2}) +$ 2Fe in (2)a 000 4Ti in (4)i $\pm (x0z)$ with $x = 0, z = \frac{1}{4}$ 8S in (4)i $\pm (x0z)$ with $x = \frac{1}{3}, z = \frac{3}{8}$ and $x = \frac{1}{3}, z = \frac{7}{8}.$

Special mention must be made of the Fe₃TiS₂ supercell. Usually, the $\sqrt{3}a$ cell will be the more likely to occur for this stoichiometry. If one wants to maintain the rigid 2a supercell for this stoichiometry (i.e., $\frac{1}{6}$ Fe) cannot be accommodated in the octahedral interstices. As one possibility, these extra Fe atoms may occupy either tetrahedral or bipyramidal interstices. However, we cannot prove explicitly the existence of such interstitial Fe atoms at present. The low-angle reflection data for the four compounds are summarized in Table III. For the 2a cell compounds, X-ray reflections are also indexed in terms of a monoclinic cell.

In the monoclinic indexing, the reflections appeared in accordance with the nonextinction conditions for the proposed space groups, i.e., h+k=2n for $x=\frac{1}{4}$ and h+k+l=2n for $x=\frac{1}{2}$, respectively.

As we have pointed out in the introduction, the problem of the crystal structure of Fe₄TiS₂ $(=FeTi_2S_4)$ has not been quite settled yet. Our lattice parameter data for Fe₄TiS₂ are indeed considerably different from those for the same sulfides prepared from different raw materials (cf. Table II). Our sample has the largest lattice parameters. This significant difference in lattice parameters may arise from the difference in metallic ion distribution as well as that in vacancy distribution. Both Hahn et al. (4) and Plovnick et al. (5, 6) assumed equivocally that Fe and Ti atoms are distributed in the alternate metal layers along the c axis. However, in order to bring about the proposed trigonal or monoclinic cell, it is only necessary to have vacancy ordering along the c axis. That is, one would have obtained almost the same X-ray reflection diagrams even

TABLE III	Low-Angle Reflections from Powder Diffractograms (CuK α ; $2\theta = 10 \sim 50^{\circ}$)
-----------	---

																				I obsd.	×	M	WV	W		s			MA	s		WVV		
	I obsd.	SV	ΜΛ	WV	wv	WVW	W	VVW	٨٨	S	×								m?	$f^4 \sin^2 \theta$ cald.	180	213	550	674		853	011	1227	1296	1395		1791		
2:P3c1	$10^4 \sin^2 \theta$ cald	182	271	635	678	726	860	906	1361	1404	1632								Fe ₃ TiS ₂ :12	$\sin^2 \theta$ obsd. 10	180	213	551	673		851	010	1222	1296	1392		1771		
Fe _f Ti	$10^4 \sin^2 \theta$ obsd.	181	272	635	678	726	858	910	1361	1399	1630									h k l 104	002	101	011	200	110/	202	(7 T T)	211	105	204	114)	106		
	h k lb	002	101	103	110	004	112	200	105	114	204								M. Bloccov	hkl magazar	002	101	111	200 /		202 (1 1 2	114	105	204 /	_	106		
																			Г	211														
	I obsd.	\$A	W	ΜΛ	ΜΛ	M		W	s		ΜΛ	WV	٨v	ΜΛ	s		M			I obsd.	s	M	νw	W	M		* ;	E	3	νw	٨N	S	WV	WN
C2 m	$10^4 \sin^2 \theta$ cald.	184	216	556	583	680		734	864		923	1236	1317	1374	1414		1657	1651	::I2/m	$10^4 \sin^2 \theta$ cald.	176	212	549	564	673	NOF.	101	ĥ	901	1223	1268	1377	1574	1605
Fe ⁴ TiS ₂ :	$10^4 \sin^2 \theta$ obsd.	184	216	555	582	680		732	865		918	1238	1319	1373	1414		1645	2	Fe ₁ TiS ₃	$10^4 \sin^2 \theta$ obsd.	179	212	553	571	673	r	130	100	913	1221	1288	1391	1577	1615
Monoplain	h k l	002	201	021	203	/2 2 0)	(400)	004	/2 2 2/	(4 0 2)	023	421	205	422	(2 2 4)	(404)	025	006)	Monodinio	hkl	002	101	011	103	/200/	(110)		$\binom{\frac{2}{5}}{112}$	013	211	105	$\binom{2 0 4}{1 1 4}$	213	015
Unconcide	h k l	002	101	111	103	200		004	202		113	211	105	212	204		115	006	Ulauosonald	h k l	002	101	111	103	200	. 00		* 0 *	113	211	105	204	213	115

" Indexed on the 2a supercell.

TAKAHASHI AND YAMADA

28

if Fe and Ti atoms are randomly distributed in the (000) and (00 $\frac{1}{2}$) sites, provided vacancies are confined to the (00 $\frac{1}{2}$) sites in the Cd(OH)₂ cell. This type of disordering of metallic ions seems to have been overlooked so far. Since we prepared our Fe₄TiS₂ from TiS₂ and Fe, such disordering may be kept to a minimum in our sample. This is the probable explanation of the observed difference in lattice parameters.

2. Magnetic Properties

The inverse magnetic susceptibilities $1/\chi$ for $Fe_{x}TiS_{2}$ are plotted against temperature in Fig. 2. It is evident that the $1/\chi$ vs T curves for Fe₄TiS₂, Fe₄TiS₂ and Fe₄TiS₂ obey the Curie-Weiss law quite well in the high-temperature region. However, they all become non-linear near the Curie point. This nonlinear behavior is considered to be due to the short range magnetic ordering. A similar nonlinearity of $1/\chi$ near the Curie point has been observed in ferromagnetic chalcogenide spinels (10). In the same figure, the asymptotic lines used for the determination of the paramagnetic Curie temperature θ_n and the effective paramagnetic moment per Fe atom P_{eff} of these compounds are also drawn. In the calculation of P_{eff} , we implicitly neglected the contribution from Ti ions. This is justifiable because no localized moments are found in compounds containing Ti ions (11, 12).

The $1/\chi$ vs T curve for Fe₄TiS₂ can not be approximated by a single straight line and seems to be typical of a ferrimagnet. However, it cannot be concluded at present that Fe₄TiS₂ is a ferrimagnet, since no spontaneous magnetization was observed down to 78 K for this compound.

FIG. 2. Inverse susceptibility vs temperature for Fe_xTiS₂; $x = \frac{1}{4}, \frac{1}{2}, \frac{1}{2}$ and $\frac{2}{3}$.

FIG. 3. Magnetic moment per iron atom vs temperature for $Fe_{4}TiS_{2}$.

The magnetization vs temperature curves for Fe₁TiS₂ and Fe₃TiS₂ are shown in Figs. 3 and 4, respectively. The ferromagnetic Curie temperature was arbitrarily determined by the kink point of the magnetization curve in the remnant magnetic field of 40 Oe. The θp , P_{eff} and T_c data are summarized in Table IV. Judging from the P_{eff} values, Fe atoms are effectively trivalent (Fe³⁺) in Fe₁TiS₂ and divalent (Fe²⁺) in Fe₁TiS₂. The anomalously low P_{eff} value for Fe₃TiS₂ can not be explained if d electrons in Fe ions are assumed to be completely localized. Delocalization of d electrons may be induced if interstitial Fe atoms bridge between neighboring Fe atoms in octahedral interstices.

The magnetic properties of our $Fe_{\frac{1}{2}}TiS_{2}$ sample are quite different from those reported

FIG. 4. Magnetic moment per iron atom vs temperature for $Fe_{3}TiS_{2}$.

TABLE IV

Ferromagnetic Curie Temperature T_e , Paramagnetic Curie Temperature θ_p and Effective Paramagnetic Moment P_{eff} for Fe_xTiS₂: $x = \frac{1}{4}, \frac{1}{2}, \frac{2}{3}$.

Compound	$T_{c}(^{\circ})$	$\theta_p(^\circ)$	$P_{\rm eff}\left(\mu_{\rm B} ight)$	$(P_{\rm eff})$ cald. $(\mu_{\rm B})$
Fe ₁ TiS ₂		27	6.1	5.92ª
Fe ₄ TiS ₂	111	124	4.8	4.90
Fe3TiS2	112	128	3.2	

" The spin only moment calculated for Fe³⁺

^b The spin only moment calculated for Fe²⁺

by Morris *et al.* (13). They obtained a low T_c (60.2 K) and a smaller P_{eff} (3.54 for their sample 1). This difference may again be accounted for by the differences in both metallic ion and vacancy orderings as we have suggested in the preceding section.

The temperature dependence of the magnetization for FeT_jiS₂ or Fe_jTiS₂ does not seem to be described by the ordinary Brillouin function (cf. Figs. 3 and 4). The magnetic properties of these compounds at $T \leq T_c$ should be highly anisotropic because of their layer structures. Magnetization measurements at lower temperatures, preferably on the single crystals, are desirable to study further the magnetic properties of these compounds.

Summary and Conclusions

The iron-containing Cd(OH)₂ structure compounds, Fe_xTiS₂ ($x = \frac{1}{4}, \frac{1}{3}, \frac{1}{2}$ and $\frac{2}{3}$) have been prepared. Fe₄TiS₂, Fe₄TiS₂ and Fe₄TiS₂ form a pseudohexagonal supercell (crystal symmetry: monoclinic) of a' = 2a and c' = 2c, while Fe₄TiS₂ forms a trigonal supercell (space group P3mI) of $a' = \sqrt{3}a$ and c' = 2c. In these compounds, except for Fe₃TiS₂, all the Fe atoms occupy octahedral interstices between neighboring sulfur layers. In Fe₃TiS₂, there may be interstitial Fe atoms. Magnetic measurements indicate that Fe₄TiS₂ and Fe₃TiS₂ are ferromagnets, with $\theta_p =$ 124 and 128 K and $T_c = 111$ and 112 K, respectively. The $1/\chi$ vs temperature plot for Fe₄TiS₂ follows the Curie-Weiss law at higher temperatures giving $\theta_p = 26$ K, while that for Fe₄TiS₂ is typical of a ferromagnet. No spontaneous magnetization was observed for these two compounds down to 78 K. The effective paramagnetic moment per Fe atom, P_{eff} , calculated from the susceptibility data, indicated that iron atoms are in an effective trivalent Fe³⁺ state in Fe₄TiS₂ and in an effective divalent Fe²⁺ state in Fe₄TiS₂. An anomalously small P_{eff} value for Fe₄TiS₂ seems to indicate that *d* electrons in Fe ions are only partly localized in this compound.

Acknowledgments

We are indebted to Dr. P. K. Baltzer for helpful discussion and useful comments and to Dr. S. Tosima for critical reading of the manuscript. We also wish to thank Mr. K. Ametani for performing the chemical analyses, and Mr. K. Miyatani and Mr. M. Kojima for their help in operating the vibrating sample magnetometer.

References

- J. M. VAN DER BERG AND P. COSSEL, Proc. 2nd Int. Conf. Solid Compounds Transition Elements, Twente, 43 (1967).
- 2. F. HULLIGER AND E. POBITSCHKA, J. Solid State Chem. 1, 117 (1970).
- 3. J. M. VOORKOEVE AND M. ROBBINS, J. Solid State Chem. 1, 134 (1970).
- H. HAHN, B. HARDER, AND W. BROCKMÜLLER, Z. Anorg. Allg. Chem. 288, 260 (1956).
- 5. R. H. PLOVNICK, M. VLASSE AND A. WOLD, *Inorg. Chem.* 7, 127 (1968).
- R. H. PLOVNICK, D. S. PERLOFF, M. VLASSE, AND A. WOLD, J. Phys. Chem. Solids 29, 1935 (1968).
- 7. F. K. LOTGERING AND R. P. VAN STAPELE, J. Appl. Phys. 39, 417 (1968).
- S. TAKEUCHI AND H. KATSUTA, J. Japan Inst. Metals 34, 758 (1970).
- 9. K. AMETANI, F. OKAMOTO AND T. TAKAHASHI, Proc. Japan Chem. Soc. Spring Meeting II, p. 732 (1972).
- P. K. BALTZER, P. J. WOJTOWICZ, M. ROBBINS, AND E. LOPATIN, *Phys. Rev.* 151, 367 (1966).
- 11. F. HULLIGER, "Structure and Bonding," vol. 4, pp. 144–145, Springer-Verlag, Berlin (1968).
- A. KJEKSHUS ZND W. B. PEARSON, in "Progress in Solid State Chemistry" (H. Reiss, Ed.) Vol. 1, pp. 90-91, Pergamon Press (1964).
- 13. B. L. MORRIS, V. JOHNSON, R. H. PLOVNICK, AND A. WOLD, J. Appl. Phys. 40, 1299 (1969).